| SET |
Force vectors in polar representation: (| |,θ) |
Graphical Representation of the forces' magnitude in the units used in the ruler | Magnitude of the resultant forces in SI units and direction |
|---|---|---|---|
| 1 |
1 = (1.96 N, 15°) 2 = (3.92 N, 145°)
|
| 1|:
| 2|: | 1 + 2|:
|
| 1 + 2| = θ = |
| 2 |
3 = (2.94 N, 15°) 4 = (3.92 N, 145°)
|
||
| 3 |
5 = (2.94 N, 15°) 6 = (3.92 N, 145°) 7 = (4.90 N, 145°)
|
Table 2 - Vector Addition using the Analytic Method
| SET |
Force vectors in polar representation: (| |,θ) |
Cartesian Coordinates | Magnitude and direction of the resultant forces |
|---|---|---|---|
| 1 |
1 = (1.96 N, 15°) 2 = (3.92 N, 145°)
|
F1x = ;F1y = |
| 1 + 2| = θ = (use your drawing to find out whether you need to add 180° or 360°) |
| F2x = ;F2y = | |||
( 1 + 2)x =
;( 1 + 2)y =
|
|||
| 2 |
3 = (2.94 N, 15°) 4 = (3.92 N, 145°)
|
||
| 3 |
5 = (2.94 N, 15°) 6 = (3.92 N, 145°) 7 = (4.90 N, 145°)
|
||
SCALE (use it as a conversion factor):