SET |
Force vectors in polar representation: (||,θ) |
Graphical Representation of the forces' magnitude in the units used in the ruler | Magnitude of the resultant forces in SI units and direction |
---|---|---|---|
1 |
1 = (1.96 N, 15°) 2 = (3.92 N, 145°) |
|1|:
|2|: |1 + 2|: |
|1 + 2| = θ = |
2 |
3 = (2.94 N, 15°) 4 = (3.92 N, 145°) |
||
3 |
5 = (2.94 N, 15°) 6 = (3.92 N, 145°) 7 = (4.90 N, 145°) |
Table 2 - Vector Addition using the Analytic Method
SET |
Force vectors in polar representation: (||,θ) |
Cartesian Coordinates | Magnitude and direction of the resultant forces |
---|---|---|---|
1 |
1 = (1.96 N, 15°) 2 = (3.92 N, 145°) |
F1x = ;F1y = |
|1 + 2| = θ = (use your drawing to find out whether you need to add 180° or 360°) |
F2x = ;F2y = | |||
(1 + 2)x = ;(1 + 2)y = | |||
2 |
3 = (2.94 N, 15°) 4 = (3.92 N, 145°) |
||
3 |
5 = (2.94 N, 15°) 6 = (3.92 N, 145°) 7 = (4.90 N, 145°) |
||
SCALE (use it as a conversion factor):